Poisson cohomology of plane Poisson structures with isolated singularities revisited
نویسندگان
چکیده
منابع مشابه
Singularities of Poisson structures and Hamiltonian bifurcations
Consider a Poisson structure on C∞(R3,R) with bracket {, } and suppose that C is a Casimir function. Then {f, g} =< ∇C, (∇g × ∇f) > is a possible Poisson structure. This confirms earlier observations concerning the Poisson structure for Hamiltonian systems that are reduced to a one degree of freedom system and generalizes the Lie-Poisson structure on the dual of a Lie algebra and the KKS-symple...
متن کاملEssential Variational Poisson Cohomology
In our recent paper [DSK11] we computed the dimension of the variational Poisson cohomology H•K(V) for any quasiconstant coefficient l × l matrix differential operator K of order N with invertible leading coefficient, provided that V is a normal algebra of differential functions over a linearly closed differential field. In the present paper we show that, for K skewadjoint, the Z-graded Lie sup...
متن کاملThe variational Poisson cohomology
It is well known that the validity of the so called LenardMagri scheme of integrability of a bi-Hamiltonian PDE can be established if one has some precise information on the corresponding 1st variational Poisson cohomology for one of the two Hamiltonian operators. In the first part of the paper we explain how to introduce various cohomology complexes, including Lie superalgebra and Poisson coho...
متن کاملFormal Poisson Cohomology of Twisted r–Matrix Induced Structures
Quadratic Poisson tensors of the Dufour-Haraki classification read as a sum of an r-matrix induced structure twisted by a (small) compatible exact quadratic tensor. An appropriate bigrading of the space of formal Poisson cochains then leads to a vertically positive double complex. The associated spectral sequence allows to compute the Poisson-Lichnerowicz cohomology of the considered tensors. W...
متن کاملComputing the Poisson Cohomology of a B-poisson Manifold
Because Poisson cohomology is quite challenging to compute, there are only very select cases where the answer is known. In the case of a symplectic manifold where the Poisson bi-vector is non-degenerate, the Poisson cohomology is isomorphic to the de Rham cohomology. The non-degeneracy of π allows us to define an isomorphism T ∗M → TM that provides this isomorphism in cohomology: H(M) ' H π(M)....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2020
ISSN: 0022-2488,1089-7658
DOI: 10.1063/5.0014574